Site icon Thumbsup

NetApp แชร์การใช้งาน ‘AI’ ในกลุ่มอุตสาหกรรมการผลิต โทรคมนาคม และการแพทย์

โมเดล Deep Learning (DL) ก่อให้เกิดความเปลี่ยนแปลงครั้งใหญ่เกี่ยวกับรูปแบบการประยุกต์ใช้งานข้อมูลเชิงลึกในสถานการณ์จริงและในชีวิตประจำวัน  ก่อนหน้านี้โมเดล Deep Learning ถูกใช้งานอย่างจำกัดเฉพาะในแวดวงวิทยาศาสตร์และการวิจัย แต่เนื่องจากปัจจุบันมีข้อมูลจำนวนมหาศาล

อีกทั้งพลังประมวลผลของคอมพิวเตอร์สามารถรองรับการประมวลผลแบบคู่ขนานได้อย่างรวดเร็วมากขึ้น มีเฟรมเวิร์กซอฟต์แวร์และโมเดลต่างๆ ดังนั้นบริษัททั้งขนาดเล็กและขนาดใหญ่จึงหันมาปรับใช้เทคโนโลยี AI (Artificial Intelligence) กันอย่างกว้างขวาง เพื่อกลั่นกรองข้อมูลเชิงลึกและนำไปใช้ในการปรับปรุงและขยายธุรกิจให้เติบโต

 

กรณีการใช้งาน AI ในอุตสาหกรรมการผลิต

การพบเจอกันของ Internet of Things (IoT) และ AI ส่งผลให้เกิดแนวคิดเรื่องระบบการผลิตแบบอัจฉริยะ หรือ Smart Manufacturing ที่มีการใช้เทคโนโลยีด้านการรู้คิดของคอมพิวเตอร์ปรับปรุงประสิทธิภาพในด้านต่างๆ เช่น การจัดการสินทรัพย์ การจัดการซัพพลายเชน การจัดการการขนส่ง และการตรวจสอบติดตามคำสั่งซื้อ

กรณีการใช้งาน AI ที่พบเห็นอย่างแพร่หลายในภาคการผลิต

กรณีการใช้งาน AI ในธุรกิจโทรคมนาคม

ในระดับที่สูงขึ้นไป สองปัจจัยหลักที่ขับเคลื่อนการใช้งาน AI ในธุรกิจโทรคมนาคม ได้แก่ การลดค่าใช้จ่ายในการดำเนินงานโดยอาศัยระบบงานอัตโนมัติ และการมอบประสบการณ์ที่เหนือกว่าให้แก่ลูกค้า  ข้อมูลจาก Tractica ชี้ว่าการลงทุนด้านโทรคมนาคมในเทคโนโลยี AI คาดว่าจะแตะระดับ 36.7 พันล้านดอลลาร์ต่อปีภายในปี 2568  กรณีการใช้งาน AI ที่สำคัญในภาคธุรกิจโทรคมนาคมคาดว่าจะเป็นเรื่องของการตรวจสอบและจัดการการดำเนินงานเกี่ยวกับเครือข่าย โดยครองสัดส่วนค่าใช้จ่ายด้าน AI สูงที่สุดในช่วงระยะเวลาดังกล่าว  ส่วนกรณีการใช้งาน AI ที่สำคัญอื่นๆ เกี่ยวข้องกับโปรแกรมผู้ช่วยเสมือนจริงสำหรับบริการลูกค้า, ระบบ CRM อัจฉริยะ และไซเบอร์ซีเคียวริตี้


กรณีการใช้งาน AI ที่ได้รับความนิยมในธุรกิจโทรคมนาคม

 

กรณีการใช้งาน AI ในแวดวงการแพทย์

การดำเนินการทางการแพทย์ต้องอาศัยกระบวนการต่างๆ อย่างมาก จึงมีความเป็นไปได้สูงมากที่จะใช้ AI เพื่อขับเคลื่อนการปรับปรุงประสิทธิภาพ ตอบสนองความต้องการในส่วนที่ยังเข้าไม่ถึง และรองรับการทำงานซ้ำๆ โดยอัตโนมัติ ทั้งในส่วนของการวิจัยและพัฒนา (R&D) การดูแลรักษาผู้ป่วย การถ่ายภาพทางการแพทย์ และงานด้านการบริหารจัดการ  ผลการศึกษาของ Accenture ชี้ว่า ภายในปี 2569 การประยุกต์ใช้งาน AI ในด้านการแพทย์จะช่วยประหยัดค่าใช้จ่ายได้ถึง 150 พันล้านดอลลาร์ต่อปี

กรณีการใช้งาน AI ที่ได้รับความนิยมในแวดวงการแพทย์

 

กรณีศึกษาสำหรับ ONTAP AI ในแวดวงการแพทย์

นอกเหนือจากกรณีศึกษาเกี่ยวกับกรณีการใช้งาน AI ในกลุ่มอุตสาหกรรมต่างๆแล้ว เรามาลองดูตัวอย่างบางส่วนของการนำแพลตฟอร์ม ONTAP AI ไปใช้งานในภาคส่วนที่เกี่ยวข้องดังต่อนี้

สำหรับกรณีการใช้งานที่เกี่ยวข้องกับการแพทย์ มีการนำแพลตฟอร์มไปใช้ในการคัดแยกภาพถ่ายเนื้องอกมะเร็งเต้านม  เราใช้ชุดข้อมูลของภาพเซลล์จาก University of Wisconsin รวมไปถึงโมเดล CNN พร้อมด้วยเลเยอร์แบบคอนโวลูชัน 3 เลเยอร์ และเลเยอร์แบบเชื่อมต่ออย่างทั่วถึง 2 เลเยอร์ โดยทั้งหมดนี้อยู่บนระบบ DGX-1, AFF A800, TensorFlow โดยมีการจัดเก็บข้อมูลด้วยเทคโนโลยี FlexGroup Volumes

เราสามารถฝึกสอนโมเดลดังกล่าวให้มีความแม่นยำ 79% ในการระบุเซลล์ที่เป็นเนื้องอกธรรมดา และมีความแม่นยำถึง 92% ในการระบุเซลล์ที่เป็นเนื้อร้ายภายในชุดข้อมูลที่ทดสอบ  แน่นอนว่าความแม่นยำดังกล่าวถูกจำกัดด้วยชุดข้อมูลขนาดเล็กที่ใช้ แต่ก็แสดงให้เห็นถึงความเป็นไปได้ในการใช้งาน AI และ ONTAP AI

การประยุกต์ใช้งาน AI ในกลุ่มอุตสาหกรรมต่างๆ จำเป็นต้องอาศัยการจัดเก็บข้อมูลที่สอดประสานกันระหว่างอุปกรณ์ปลายทาง (edge) ศูนย์คอมพิวเตอร์หลัก (core) และระบบคลาวด์ ดังนั้นการจัดการข้อมูลอย่างไร้รอยต่อจึงมีความสำคัญ  องค์กรต่างๆ สามารถเลือกที่จะพัฒนาแอพพลิเคชั่น AI บนระบบคลาวด์สาธารณะหรือระบบที่ติดตั้งภายในองค์กรก็ได้ โดยขึ้นอยู่กับแหล่งข้อมูล ขนาดของชุดข้อมูล และต้นทุนค่าใช้จ่าย

ติดตามข้อมูลเพิ่มเติมจากเน็ตแอพได้ที่ www.netapp.com/ai #AI #ONTAPAI